Adapting Large-Scale Vision-and-Language Models for Downstream Classification Konwoo Kim, advised by Professor Deepak Pathak

Introduction

Vision-and-language pre-training methods have rapidly shown increasing promise. Although fine-tuning methods have emerged, many have only been studied for language models and it's unclear how they perform on diverse downstream settings.

Contrastive Language-Image Pre-Training

In our analysis, we focus on CLIP [1] (contrastive language-image pre-training), a large-scale model trained on over 400 million online images and text. Given a batch of image-text data, CLIP is trained with a contrastive loss to maximize the similarity of paired data and minimize the similarity of unpaired data.

$$p(\mathbf{T}_j \mid \mathbf{I}_i) = \frac{\exp\left(\cos(\mathbf{T}_j, \mathbf{I}_i)/\tau\right)}{\exp\left(\cos(\mathbf{T}_j, \mathbf{I}_i)/\tau\right) + \sum_{k \neq j} \exp\left(\cos(\mathbf{T}_k, \mathbf{I}_i)/\tau\right)}$$

Figure 1. Prediction probability for a single image-text pair

For our experiments, we consider three classes of finetuning methods which can act on CLIP.

- Methods which only fine-tune **existing parameters** • Full-model fine-tuning, LayerNorm tuning
- Methods which add new parameters at the beginning, middle, or end of the model
 - Prompt-tuning [2], Adapter/Compacter [3], Linear probe
- Methods which combine both ideas

We analyze these on four settings determined by two factors: amount and distribution of downstream data.

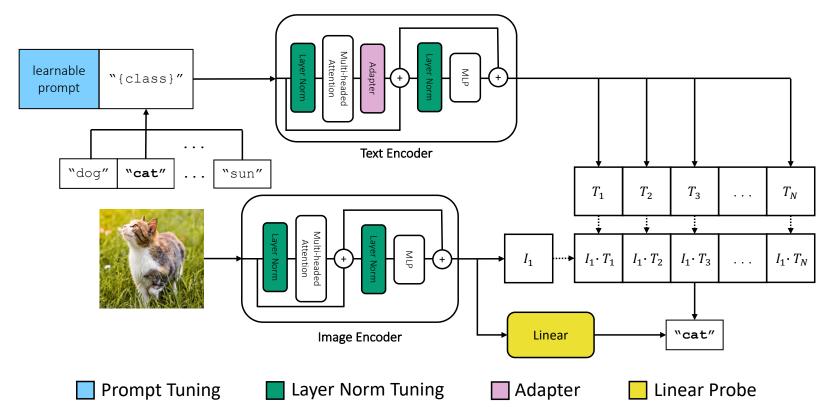


Figure 2. Illustration of multiple methods for adapting CLIP to downstream image classification tasks

We find that fine-tuning only the layer normalization parameters is an effective baseline. These parameters exist within intermediate layers of CLIP and apply perelement normalization across batches.

y =

Figure 3. Layer normalization transformation on a single mini-batch LayerNorm tuning performs the best in all four regimes, across amount and distribution of downstream data.

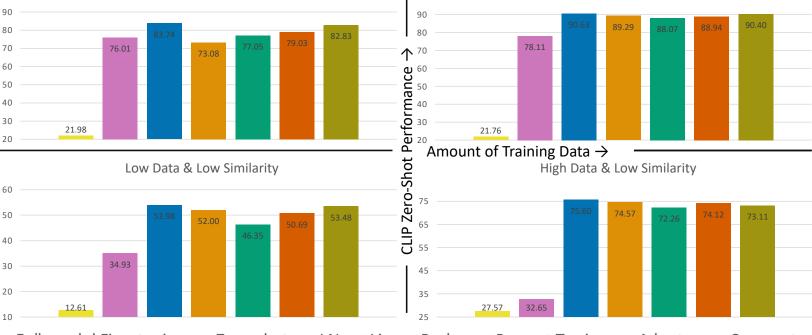


Figure 4. Comparison of fine-tuning methods across different regimes of training data and CLIP zero-shot performance

existing fine-tuning methods.

- methods
- Using the weights of a pre-trained LayerNorm-tuned model as initialization

	Low-Data Regime			High-Data Regime		
Type of LN Tuning	None	Normal	As Initialization	None	Normal	As Initialization
Linear Probe	62.54	63.55	66.61	81.93	83.84	84.36
Prompt Tuning	61.70	62.82	63.95	80.26	83.69	83.17
Adapter	64.82	66.23	66.63	81.53	83.31	83.63
Compacter	68.15	69.69	68.76	81.75	83.61	83.17

 Table 1. Effect of combining LayerNorm tuning with other methods

The strong performance of LayerNorm tuning shows the benefit of learning representations grounded in multiple modalities.

Carnegie Mellon University

Effectiveness of LayerNorm

$$=rac{oldsymbol{x} - \mathrm{E}[oldsymbol{x}]}{\sqrt{\mathrm{Var}[oldsymbol{x}] + \epsilon}} \cdot \gamma + oldsymbol{x}$$

- Because LayerNorm tuning only affects existing
- parameters, we propose two ways of combining it with
- Simultaneously fine-tuning the parameters of both
- Across the low and high-data regimes, both
- combinations consistently improve upon the baseline performance of other fine-tuning methods.

Domain and Class Generalization

We evaluate our methods within a few-shot setting and on a domain generalization benchmark. We find that: • LayerNorm tuning alone is competitive with current,

- task-specific state of the art methods
- With a linear probe, it produces representations which generalize across classes and domains

	FMoW	Camelyon17	iWildCam
Zero-shot	19.71	67.46	3.73
LayerNorm Tuning	47.59	90.47	18.52
Linear Probe + LN as Initialization	48.98	89.98	23.80
Best leaderboard result	55.5	91.6	38.5
Mini-Image	Net (1-sho	ot) Mini-Image	Net (5-shot)

	Mini-ImageNet (1-shot)	Mini
Zero-shot	86.20	
LayerNorm	89.24	
Prompt Tuning + LN	89.61	
Adapter + LN	91.17	
Linear Probe + LN	92.08	
Best leaderboard result	82.99	

 Table 2. Domain generalization and few-shot results

Discussion

Our analysis provides two key findings:

- LayerNorm tuning is a simple but effective baseline Ο for adapting to downstream classification tasks.
- Combining LayerNorm tuning with existing methods improves performance in diverse settings.

Our results show the importance of joint vision-andlanguage training for adaptation and robust visual **representations**. Future directions of work include:

- Examining alternative pre-training schemes
- Evaluating fine-tuning methods on more general Ο tasks across vision and language
- Applying fine-tuning methods to other domains like Ο reinforcement learning or robotics

References

[1] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021). Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020.

[2] Lester, B., Al-Rfou, R., & Constant, N. (2021). The power of scale for parameterefficient prompt tuning. arXiv preprint arXiv:2104.08691.

[3] Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019, May). Parameter-efficient transfer learning for NLP. In International Conference on Machine Learning (pp. 2790-2799). PMLR.

96.56
96.46
97.05
97.39
97.94
91.50